
Introduction to HPC-UGent
Oct 16th 2019 - PRETREF workshop

https://www.ugent.be/hpc/en/training/2019/pretref

hpc@ugent.be https://ugent.be/hpc

https://www.ugent.be/hpc/en/training/2019/pretref
mailto:hpc@ugent.be
https://ugent.be/hpc

Part of ICT Department of Ghent University

Our mission
HPC-UGent provides centralised scientific computing services,
training, and support for researchers from Ghent University,
industry, and other knowledge institutes.

Our core values
Empowerment - Centralisation - Automation - Collaboration

HPC-UGent

2

hpc@ugent.be

mailto:hpc@ugent.be

HPC-UGent: staff

3

Stijn De Weirdt  
technical lead

Kenneth Hoste  
user support & training

Andy Georges 
sysadmin, tools

Ewald Pauwels  
team lead

Wouter Depypere  
sysadmin, hardware

Kenneth Waegeman 
sysadmin, storage

Álvaro Simón García
cloud, user support

Balázs Hajgató 
sysadmin, tools

Bart Verheyde
sysadmin, hardware

Centralised hardware
in the UGent datacenter 
at campus Sterre (building S10)

4

Centralised hardware

5

6

1548 - 1620
°Bruges

STEVIN
HPC

infrastructure

Financing by: HPC-UGent 
users

HPC-UGent Tier-2 (STEVIN): central investments

HPC-UGent Tier-2 (STEVIN)

7

https://www.ugent.be/hpc/en/infrastructure
6 Tier-2 clusters 

 ~600 workernodes, ~15,000 cores

60 will be retired soon (Oct'19)

https://www.ugent.be/hpc/en/infrastructure

Network connections between nodes ('interconnect')

 Ethernet: 1-10 Gbit/s Infiniband: 50 - 100 Gbit/s

 € €€(€)
 for single core/node jobs required for MPI jobs
 (too slow for fast inter-node communication)

8

HPC-UGent Tier-2 (STEVIN)

HPC-UGent Tier-2 (STEVIN)

9

https://www.ugent.be/hpc/en/infrastructure

"joltik": new GPU cluster (currently in pilot)

• 10 workernodes, each with:
• 2x 16-core Intel Xeon Gold 6242 2.8GHz (Cascade Lake)
• 230GB (usable) RAM memory in total
• 4 NIVIDIA Volta V100 GPUs (32GB GPU memory)

• Infiniband interconnect (double EDR)
• available software: TensorFlow, PyTorch, GROMACS, ...

ETA for general availability: early 2020

https://www.ugent.be/hpc/en/infrastructure

VSC Tier-2 infrastructure

10

Antwerp University association
Brussels University association
Ghent University association
KU Leuven association
Limburg association University-Colleges

Vlaams Supercomputer Centrum 
(Flemish Supercomputer Center)

https://www.vscentrum.be/offer

VSC Tier-1 – BrENIAC (@ KUL)

11

For up to date information, see:
https://www.vscentrum.be/tier1

(16,240 cores in total)

extension brings total compute power to ~1.5 PFlops
• 408 additional workernodes, 

each with 2x Intel Skylake 14-core processors
• + double the scratch storage volume

12

For academics (all Flemish research centers):
• Free of charge
• Starting Grant (500 node days)

• Fill in application form (https://www.vscentrum.be/tier1), 
send it to hpcinfo@kuleuven.be (cc hpc@ugent.be)

• Project access (500 to 5000+ nodedays)
• 3 evaluation moments per year
• Application form: see https://www.vscentrum.be/tier1

• Don’t hesitate to contact hpc@ugent.be for help!

VSC Tier-1 – BrENIAC (@ KUL)

mailto:hpcinfo@kuleuven.be
mailto:hpc@ugent.be
https://www.vscentrum.be/en/access-and-infrastructure/tier-1
mailto:hpc@ugent.be

13

For industry:
• Exploratory access (500 node days)

• Free of charge
• Contact hpc@ugent.be

• Contract access
• FWO/UGent/company contract
• Payed usage (~13 euro / node / day)
• Contact hpc@ugent.be

• More information: https://www.vscentrum.be/tier1

VSC Tier-1 – BrENIAC (@ KUL)

mailto:hpc@ugent.be
mailto:hpc@ugent.be
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

Getting a VSC account

14

• See Chapter 2 in HPC-UGent tutorial
• https://www.ugent.be/hpc/en/access/faq/access
• All users of AUGent can request a VSC account

• Researchers & staff
• Master/Bachelor students (after motivation of ZAP)

• VSC account can be used to access HPC infrastructure on all VSC sites
• Subscribed to hpc-announce and hpc-users mailing lists
• Beware of using HPC for teaching/exam purposes!

• No guarantee on HPC availability (power outage/maintenance)
• Have a backup plan at hand
• Advisable teaching/exam formula: project work

https://www.ugent.be/hpc/en/access/faq/access

Managing your VSC account

15

• You can manage your VSC account via the VSC account page:

https://account.vscentrum.be

https://account.vscentrum.be

16

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

Workflow on HPC infrastructure

17

High-level overview of HPC-UGent infrastructure

Connected to an HPC-UGent login node

18

Basic Linux tutorial

19

• a basic Linux tutorial is available in the HPC-UGent documentation, 
available at https://www.ugent.be/hpc/en/support/documentation.htm

• covers basic usage of the shell environment

• explains commonly used commands

• focus on HPC context & job scripts

• includes a couple of basic exercises

• for questions or problems, 
don't hesitate to contact hpc@ugent.be !

https://www.ugent.be/hpc/en/support/documentation.htm
mailto:hpc@ugent.be

20

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

See Chapter 3 in HPC-UGent tutorial
• Users interact with the HPC infrastructure via the login nodes
• No direct access to the workernodes 

(except when a job is running on it)

Workflow on HPC infrastructure

Transferring files to/from the HPC-UGent infrastructure

21

• see section 3.2 in HPC-UGent tutorial for detailed information
• via login nodes
• on Linux or macOS:

• using 'scp' in terminal window (use 'scp -r' for directories)
• or 'rsync' for large transfers (can be restarted)

• or graphical tool like built-in file manager or Cyberduck
• on Windows: WinSCP tool (left: own system; right: HPC; drag 'n drop)

Workflow on HPC infrastructure

22

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

• Choose correct PBS directives (Chapter 4, 11)
• Load software modules (Chapter 4)
• Useful environment variables (Chapter 4)
• Access files on shared filesystems (Chapter 6)

A job (shell) script is a text file that specifies:

• the resources that are required by the calculation 
(number of nodes/cores, amount of memory, how much time, ...)

• the software that is used for the calculation 
(via module load commands)

• the steps that should be done to execute the calculation 
(starting from $HOME), specified as shell commands, typically:

1) staging in of input files

2) running the calculation

3) staging out of results

What is a job script?

23

#!/bin/bash

echo "hello world"

• required resources can be specified via #PBS lines in job script (or via qsub)
• maximum walltime: 72 hours
• for longer jobs, use checkpointing

• preferably internal/application checkpointing
• external checkpointing by submitting jobs via csub

• see Chapter 14 in HPC-UGent tutorial

Job scripts: required resources via #PBS directives

24

#!/bin/bash

#PBS -N solving_42 ## job name

#PBS -l nodes=1:ppn=4 ## single-node job, 4 cores

#PBS -l walltime=10:00:00 ## max. 10h of wall time
#PBS -l vmem=50gb ## max. 50GB virtual memory

<rest of job script>

• All user-end software is made available via modules
• Modules prepare the environment for using the software
• Module naming scheme: <name>/<version>-<toolchain>[-<suffix>]

Load a module to use the software:
$ module load Python/3.6.6-intel-2018b

See currently loaded modules using:
$ module list or $ ml

Get overview of available modules using:
$ module avail or $ ml av

• Only mix modules built with the same (version of) compiler toolchain. 
e.g., intel (Intel compilers, Intel MPI, Intel MKL (BLAS, LAPACK))

• See also section 4.1 in HPC-UGent tutorial

Job scripts: software modules

25

• $PBS_JOBID
• job id of running job

• $PBS_O_WORKDIR
• directory from which job was submitted on login node
• common to use ‘cd $PBS_O_WORKDIR‘ at beginning of job script

• $PBS_ARRAYID
• array id of running job; only relevant when submitting array jobs (qsub -t)

• $TMPDIR
• Local directory specific to running job
• Cleaned up automatically when job is done!

• $EBROOTFOO, $EBVERSIONFOO
• root directory/version for software package Foo
• only available when module for Foo is loaded

Job scripts: useful environment variables

26

(most of these are only defined in the context of jobs!)

• See Section 6.2 in HPC-UGent tutorial
• Think about input/output:

• How will you stage in your data and input files?
• How will you stage out your output files?

• Manually (on login nodes) vs automatically (as a part of job script)

• Home filesystem: only for limited number of small files & scripts
• Data filesystem ($VSC_DATA*): ‘long-term’ storage, large files
• Scratch filesystems ($VSC_SCRATCH*): for ‘live’ input/output data in jobs

Job scripts: input data & filesystems

27

• home directory ($VSC_HOME): 3GB (fixed)

• personal data directory ($VSC_DATA): 25GB (fixed)

• personal scratch directory ($VSC_SCRATCH): 25GB (fixed)

• current quota usage can be consulted on VSC accountpage 
 https://account.vscentrum.be

• more storage quota (GBs, TBs) available for virtual organisations (VOs)  
 see Section 6.7 in HPC-UGent tutorial

• additional quota can be requested via https://account.vscentrum.be/django/vo/edit
• shared directories with VO members: $VSC_DATA_VO, $VSC_SCRATCH_VO

• personal VO subdirectories: $VSC_DATA_VO_USER, $VSC_SCRATCH_VO_USER

Storage quota

28

https://account.vscentrum.be
https://account.vscentrum.be/django/vo/edit

• consult VSC accountpage - https://account.vscentrum.be ("View Account" tab) 
(for now, only data volumes, not number of files (inode quota))

Current storage usage - personal directories

29

https://account.vscentrum.be

Current storage usage - own VO directories

30

• consult VSC accountpage - https://account.vscentrum.be ("View Account" tab) 
(for now, only data volumes, not number of files (inode quota))

https://account.vscentrum.be

• consult VSC accountpage - https://account.vscentrum.be ("View VO" tab) 
(for now, only data volumes, not number of files (inode quota))

• detailed info per VO member can only be consulted by VO administrators!

Current storage usage - total VO usage

31

https://account.vscentrum.be

Job scripts: full example (single-core job)

32

#!/bin/bash

#PBS -N count_example ## job name

#PBS -l nodes=1:ppn=1 ## single-node job, single core

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load Python/3.6.6-intel-2018b

copy input data from location where job was submitted from

cp $PBS_O_WORKDIR/input.txt $TMPDIR

go to temporary working directory (on local disk) & run

cd $TMPDIR

python -c "print(len(open('input.txt').read()))" > output.txt

copy back output data, ensure unique filename using $PBS_JOBID

cp output.txt $VSC_DATA/output_${PBS_JOBID}.txt

Job scripts: full example (multi-node job)

33

#!/bin/bash

#PBS -N mpi_hello ## job name

#PBS -l nodes=2:ppn=all ## 2 nodes, all cores per node

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load intel/2018b

module load vsc-mympirun

go to working directory, compile and run MPI hello world

cd $PBS_O_WORKDIR

mpicc mpi_hello.c -o mpi_hello

mympirun ./mpi_hello

• Your job script may produce informative/warning/error messages.

• Two output files are created for each job: stdout (*.o) + stderr (*.e)

• Located in directory where job was submitted from (by default)

• Messages produced by a particular command in the job script 
can be "caught" and redirected to a particular file instead. 
 example > out.log 2> err.log  

(see section 5.1 of our Linux tutorial for more details) 

• In addition, the software used for the calculation may have generated

additional output files (very software-specific).

Jobs scripts: generated output files

34

35

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

• Chapter 4 in course notes
• Demo: qsub, qstat, qdel
• Job scheduling

Workflow on HPC infrastructure

• Submit job scripts from a login node to a cluster for execution using qsub:
$ module swap cluster/golett

$ qsub example.sh

12345.master19.golett.gent.vsc

• An overview of the active jobs is available via qstat:
$ qstat

Job id Name User Time Use S Queue

-------------- ------ ---------- -------- - -----

12345.master19 example vsc40000 07:39:30 R long

• To remove a job that is no longer necessary, use qdel:
$ qdel 12345

Demo: qsub, qstat, qdel

36

• All our clusters use a fair-share scheduling policy.
• No guarantees on when job will start, so plan ahead!
• Job priority is determined by:

• historical usage
• aim is to balance usage over users
• infrequent/frequent users => higher/lower priority

• requested resources (# nodes/cores, walltime, memory, ...)
• larger resource request => lower priority

• time waiting in queue
• queued jobs get higher priority over time

• user limits
• avoid that a single user fills up an entire cluster

Job scheduling

37

• Use case: lots of ((very) short) single-core tasks
• Submitting lots of tiny jobs (minutes of walltime) is not a good idea

• overhead for each job (node health checks), lots of bookkeeping (job scripts, failed jobs, output files)

• Better approach:
• Array jobs

• Single job script, but still lots of submitted jobs
• Each job is assigned a unique id ($PBS_ARRAYID); can be used to select input file, parameters, …

• GNU parallel (https://www.gnu.org/software/parallel/parallel_tutorial.html)
• General-purpose tool to easily running shell commands in parallel with different inputs
• Use ‘parallel’ command in your job script

• Worker (see Chapter 12 in HPC-UGent tutorial https://www.ugent.be/hpc/en/support/documentation.htm)
• One single job that processes a bunch of tasks (multi-core or even multi-node)
• Job script is parameterized, submit with ‘wsub’ rather than ‘qsub’

Embarrassingly parallel jobs

38

https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.ugent.be/hpc/en/support/documentation.htm

To submit a request for software installation: 
 https://www.ugent.be/hpc/en/support/software-installation-request
Always include:

• software name and website
• location to download source files

• or make install files available in your account

• build instructions (if you have them)
• a simple test case with expected output

• including instructions on how to run it

Requests may take a while to process; make the request sooner rather than later!

 http://easybuilders.github.io/easybuild

Software installations

39

https://www.ugent.be/hpc/en/support/software-installation-request
http://hpcugent.github.io/easybuild/
http://easybuilders.github.io/easybuild

Don't hesitate to contact HPC-UGent support: hpc@ugent.be

Always include:
• VSC login id
• clear description of problem (or question)
• location of job script and output/error files in your account

• don’t send them in attachment, we prefer to look at it ‘in context’
• job IDs, which cluster

Preferably use your UGent email address.

Alternatives:
• short meeting (for complex problems, big projects)
• hpc-users mailing list

Questions, problems, getting help

40

mailto:hpc@ugent.be

